Analysis for the Soalr Mounting System

1. Introduction

1.1 Project description

The following sections contain the determination of the forces and the structural design calculations of the ground mounted photovoltaic system.

1.2 Technical codes

- ASCE7-05 Chapter 6: wind loads
- ASCE7-05 Chapter 7: snow loads
- ASCE7-05 Chapter 2: combinations of Loads
- International Building Code. IBC, 2006
- Aluminum Design Manual, Eighth Edition, 2005
- ANSI/AISC 360-16 An American National Standard
- ANSI/AISC 360-16 An American National Standard

1.3 Project Information

The modules have the following dimensions:	2278		х	1134	х	35	mm
Area of Module	2.58	m²					
maximum power	560	Wp					
Weight of Module	27.80	kg					
Unit Array :	36	rows	х	5	colu	mn	
the quantity of solar panel	180	pcs					
Array tilt angle (Deg)	10	0					
exposure category [B, C, D]	С						
Occupancy Category =	III						
basic wind speed	25.6	M/S	= ;	#### k	N/m2		
basic snow load	1.00	kN/m2	2				

1.4 construction

Unit Array :	36	rows x	5	column
Total area of module=			464.99	m²
tit of modules with horizontal pla	in		10	0

total dimensions of a solar mounting unint:

2 Load actions

with:

 β° inclination

- G based on International Building Code, IBC, 2006 according to manufacturers certificate
- W+ ASCE7-05 Chapter 6: wind loads
- W- ASCE7-05 Chapter 6: wind loads
- S ASCE7-05 Chapter 7: snow loads

2.1 permanent loads D

selfweight of solar modules	272.44 N
Total weight of solar panel	###### N

2.2 snow loads S

Angel θ	0	15	70	90
Cs	1	1	0	0

Area of Module	Area of Module 464.99 m ²					
Solar panels bear snow pres	sure		281223.			
2.2 wind loads						
2.3 wind loads:						
Calculation of the wind pressure	code cor	npiy witi		E 7-10		
Based wind Speed =			25.6	M/S		
Exposre is						
Building is Category			111			
Main Building System (MWFRS	o): D					
Building is classified as an	Building	, LOW-H	lise	00.00		
n = mean root neight =		65.61	ft< 60ft	20.00	meter	
Z = height being evaluated=		65.61	ft< 60ft	20.00	meter	
Analytical Procedures						
Building is regular shaped						
Building has simple response cha	aracteristi	CS				
Design Procedure						
Basic Wind Speed, V and Kd						
	V=	25.6	M/S		Basic Wind	Speed
Speci Check with local building of	ficials					
Wind Directionality Factor for use	e with equ	iations i	n sections	\$ 2.3 &2.	4	
	Kd=	0.85			MWFRS	
_	ls=	0.8			Importance	factor
Exposure						
Surface Roughness		_				
Exposure Category		С				
Velocity Pressure Exposure Coef	ficient: K	z & Kh	shall be fr	om Tabl	e 6-3	
Find Kz: Exp C, h=15ft						
	zg=	900	α=	9.50		
Z roof=		65.61			Roof ht	
Z min=		65.61			min Roof ht	
Kz= 2.01*(z/zg)^(2/a)=		0.85			by formula for	Exp C, h=15 ft
Kzmin= 2.01*(zmin/zg)^(2/a)=		0.85				
Topographic Effects						
Determine applicability of Kzt Fac	ctors:					
Topographic Feature is isolated f	or 100*ht	of featu	ure, or 2m	i, whiche	ever is I FALSE	no
Feature protudes above terrain w	ithin 2 m	ile quad	rant by a	factor of	2 or mc FALSE	no
Sructure is located in half of hill/ I	ridge or a	t crest c	of escarpn	nent:	FALSE	no
H/Lh > .2					FALSE	no
Bldg Ht Check : if in Exp C or D,	min ht= 1	5ft, or				
If in Exp B, min ht =60ft Does Bld	lg meet n	nin ht?				
		Ехр В с	heck :		В	no
		Ехр С с	heck :		С	no
		Exp D c	heck :		D	no

if 26	.8.1.1 tł	nru 26.8	.1.5.5 ar	e all ye	es, Kzt is	per form	nula, oth	nerwise,	Kzt=1.0		
					к	zt Criter	ia is me	t?		FALSE	
			Ŀ	(zt=	1.00						
Gus	t Effect	Factor									
Rigi	d Struct	ures	G	<u>}=</u>	0.85						
Note	e: Code	equaior	allows	this fac	tor to be	calculat	ed more	e accura	tely, usin	q equati	ons 6-4 thru 6-
Flex	ible Stri	uctures	Ģ	i= A	oplies on	lv to stri	ictures	with nati	iral frequ	ency les	s than 1 hz
Desi	ian Wind	t Loads	on Enclo	sed an	d Partiall	v Enclos	ed Rigi	Buildin	ns		
200	g	Loudo	011 <u>–</u> 11010			y 2110100	ou rugu	Danani	90		
			' r)-a*C*	с. С.						
			г	-q G	Ср						
		1	0.51	L				L	→		
			 ↓ 0.5 L ↓ 0.5 L	0.5 L	->		 ↓ 0.5 ↓ 0.5 	L 0.5			
			TTA				177	-NL			
	V	Vind		TZG	NL			ITZ.	CNU	Wind	
	Dir	rection		LT.						Directio	n
	=	\rightarrow [h	1	θ	£17		h	0	S.	$\gamma = 180^{\circ}$	0
	γ			*			Ļ	*		•	
		////	//////	/////	///	//	//////	//////	////		
ſ	Roof	Load		Wind Dir	ection. $\gamma = 0^{\circ}$		r	Wind Direc	tion. $\gamma = 180^{\circ}$		
	Angle	Case	Clear W	ind Flow	Obstructed	Wind Flow	Clear V	Vind Flow	Obstructed	Wind Flow	
ŀ	θ 0°	А	C _{NW} 1.2	0,3	-0,5	-1.2	C _{NW} 1.2	0.3	-0.5	-1.2	
	0	В	-1.1	-0.1	-1.1	-0.6	-1.1	-0.1	-1.1	-0.6	
	7.5°	AB	-0.6 -1.4	-1	-1	-1.5	0.9	0.3	-0.2 0.8	-1.2	
1	15°	A	-0.9	-1.3	-1.1	-1.5	1.3	1.6	0.4	-1.1	
- H		B	-1.9	0	-2.1	-0.6	1.8	0.6	1.2	-0.3	
- 1	22.5	B	-1.5	-1.6	-1.5	-1.7	2.2	0.7	0.5	-1	
1	30°	A	-1.8	-1.8	-1.5	-1.8	2.1	2.1	0.6	-1	
_ L		В	-2.5	-0.5	-2.3	-1.1	2.6	1	1.6	0.1	
	37.5°	A	-1.8	-1.8	-1.5	-1.8	2.1	2.2	0.7	-0.9	
ł	45°	A	-2.4	-0.0	-2.2	-1.1	2.7	2.5	0.8	-0.9	
l	15	В	-2.3	-0.7	-1.9	-1.2	2.6	1.4	2.1	0.4	
Arra	y tilt and	gle (Deg	()=				10				
v = () Cp(-):	=					-1.57	(max)			
v = '	180 Cn	(+)=					1 67	(max)			
r Doo	ia	(•)					1.07	(max)			
Des	iy oronic		< 1 45 (A = 1	0+05							
P=0	.613 *K	z *Kzt *ł	<d *v^2'<="" td=""><td>G*CP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d>	G*CP							
max	Wind p	ressure			W_{A}	=	410.01	N/m ²	Pd		
					W_{B}	= -	385.41	N/m ²	Pu		
Sola	ar panel	ls bear	wind p	ressure	e F _A	= 953	325.28	Ν			

2.5 Basic load combinations

Where strength design or load and resistance factor design is used, structures and portions thereof shall resist the most critical effects from the following combinations of factored loads:

 F_B

= -89605.76 N

1.4 D 1.2D+ 1.6L+0.5 (L_r or S or R) 1.2D+1.6 (L_r or S or R)+(1.0L or 0.5W) 1.2D+ 1.0W+1.0L+0.5(L_r or S or R) 0.9D+1.0W 1.2D+E_v+E_h+L+0.2S

0.9D-E_v+E_h

The following load combinations are considered at ultimate limit states design:

COMB1A 1.2D+ 1.6S+0.5W+ = 556466.71 N

3 Design	calculations								
the ma	the maximum load of solar panels=			556466.71 N					
Under	extreme conditions	,							
COMB3B	0.9D+W _B	=	-45470.48	Ν					
COMB3A	0.9D+W _A	=	139460.56	Ν					
COMB2B	1.2D+1.0(W-)+0.5S	=	109852.85	Ν					
COMB2A	1.2D+1.0(W+)+0.5S	5 =	294783.89	Ν					
COMB1B	1.2D+1.6S+0.5W-	=	464001.19	Ν					

3.1 Ballast front foot stre

3.1.1 Force analysis of ballasted front foot

```
Fy = \frac{1}{2} # # # # # # # \frac{1}{2} \cos \# \circ / 648 = 846 N
```


It is known from the

under the σ 207.50 Mpa < 235 Mpa

Therefore, the ballast front foot strength check is OK!

3.2 Ballast back foot strength check

3.2.1 Force analysis of the ballasted rear foot

 $Fy = \frac{1}{2} \# \# \# \# \# \# \# \# \# * \cos \# \circ / 648 = 846$ N

It is known from the calculation results in the figure that:

under the							
greatest	σ	100.9	Мра	<	235	Мра	
pressure							

Therefore, the strength check of the ballasted rear foot is OK!

4 Cement pier foundation calculation

Cement piers are mainly used to carry blows away, so only the horizontal force review under negative pressure is calculated.

bracket total negative pressure	F _{pu}	1	=	Fb*N	=	22735	5.24 N	
bracket vertical negative press	ure	F_{yu}	=	F _{pu} *cosθ	=	22389).84 N	
bracket horizontal negative pre	ssu	re F _{xu}	=	F _{pu} *sinθ	=	3947.	.93 N	
Friction coefficient μ	=	0.5						
Cement size	=	200	*	300	*	100	mm^3	
Cement quantity	=	495	рс	cs				
Cement pier density	=	2350	kg/	m^{3}				
Total weight of cement pier	=	6979.5	k	g =	68399	.1 N		
Pulling resistance F	=	68399.10	Ν					
Pullout resistance ch 68399.1	>	> 22389.	84	\rightarrow	OK			
safety rate		68399.10	1	22390 =	3.05			
Horizontal resistance check f	=	μ * F	=	34199.55	Ν	>	3947.93	Ν
safety rate		34199.55	/	3947.9 =	8.66			

The strength check of cement pier is OK.